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Abstract

The k-token graph of a given graph G, is the graph which vertex set consists of all k−subsets
of the vertex set of G and two vertices are connected by an edge exactly when their difference
corresponds to an edge of G. In this paper, we give a description on the structure of the 2-
token graph of disjoint union of multiple graphs. This result complements the previous findings
regarding the properties of the k-token graphs.
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1 Introduction

All graphs discussed in this paper are finite, undirected, and simple, meaning they do not
contain multiple edges or loops. In the context of any graph G, V (G) and E(G), are the vertex
set and the edge set of G, respectively, and we write G as G = (V (G), E(G)). Any graph H =
(V (H), E(H)) is defined as a subgraph of G = (V (G), E(G)) if and only if V (H) ⊆ V (G) and
E(H) ⊆ E(G). Furthermore, if the subgraph H of G additionally satisfies the condition: for any
x, y ∈ V (H), if xy ∈ E(G), then xy ∈ E(H), it is termed an induced subgraph of G. In such
instances, we say that H is induced by V (H).

Numerous challenges in the fields of mathematics and computer science involve representing
problems through the movement of objects on the nodes of a graph based on specific predefined
rules. In the context of "graph pebbling," a single pebbling action entails removing two pebbles
from one node and placing one pebble on an adjacent node. Theory on graph pebbling has been
an interesting subject to study as evidenced on the survey given in reference [9]. It is also reported
in [4] that the pebble motion problem on trees can be applied in many areas including memory
management in distributed systems, robot motion planning, and deflection routing. For more
particular development in graph pebbling one can also refer to [8]. Motivated by graph pebbling,
Fabila-Monroy et al, as can be referred in [7], developed a new model which is called as a token
graph.

As opposed to being constructed directly from an existing graph, graphs can also be created
from algebraic structures like groups, rings, and lattices, establishing a meaningful link between
algebra and graph theory. In [11], it is presented some results on the graph associated to a cer-
tain lattice, including the connectivity, the completeness, the hamiltonicity, the eulerianity, the
matching number and the chromatic number. In [1], the authors investigated the properties of
non-commuting graphs of groups. In this graph, two elements that are not in the centre of the
group will be adjacent if and only if they are not commuting. Motivated by the work in [1], some
non-commuting graphs of rings were introduced and investigated by the authors of reference [6].
For these two non-commuting graphs, various graph theoretical properties are obtained. In [2],
it is introduced a bipartite graph constructed from a given group which vertex set is the union
of the group (as the first part) and the set of all its subgroups (as the second part) and any ele-
ment x of the group will be adjacent to a subgroup S if and only if xS = Sx, i.e. the left and the
right cosets of x coincide. Some graph theoretical properties of the graph are presented, including
the girth, the diameter and the dominating number. Specifically, for several finite groups some
hamiltonicity and eulerianity properties of this bipartite graph are given in [13].

Given a graph G = (V (G), E(G)) of order |V (G)| = n. Let k ≤ n be a natural number and
Pk(V (G)) be the set of all k-subsets of V (G). According to [7], the k-token graph Γk(G) ofG is the
graph with Pk(V (G)) as the vertex set and two arbitrary vertices A,B ∈ Pk(V (G)) are adjacent if
and only if A△B = {x, y} for some xy ∈ E(G) where A△B denotes the symmetric difference of
A and B.

In [7], the authors provide insights into various properties of the k-token graph, including its
connectivity, diameter, cliques, chromatic number, Hamiltonian paths, and Cartesian products.
According to [7], the order and the size of the k-token graph of any graphG of order n and of size

m are
(
n
k

)
and

(
n− 2
k − 1

)
m, respectively. Moreover, it is also proved that the connectivity of

graph G implies the connectivity of the k-token graph of G.

In the specific case of k = 2, more detailed information about the properties of the 2-token
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graphs can be found in [5]. This source offers essential and complete conditions for determining
whether Γ2(G) is isomorphic to a cycle, as well as the conditions for a graph to be isomorphic to
the 2-token graph of a star graph. Additionally, it outlines the necessary and sufficient conditions
for the 2-token graph to be bipartite or a tree.

In the context of graph theory, it’s important to remember that twographs,G1 = (V (G1), E(G1))
and G2 = (V (G2), E(G2)), are considered isomorphic, denoted as G1

∼= G2, if there exists a bi-
jection π from V (G1) to V (G2) that preserves adjacency in both directions. In other words, for
any pair of vertices x and y in V (G1), xy ∈ E(G1) if and only if π(x)π(y) ∈ E(G2). This corre-
spondence is referred to as an isomorphism. It’s worth noting that the set of all isomorphisms for
a graph G is a group respect to composition, and is called as the automorphism group of G, de-
noted as Aut(G). There are some studies on the automorphism group of some particular graphs.
In [3] the authors studied automorphism group of some power graphs over finite groups, while
the authors in [14] presented automorphism groups of some bipartite graphs. In reference [12],
automorphism groups of fundamental groups of graphs of groups in which the edge groups are
incomparable up to conjugacy are presented. Automorphism groups for particular token graphs
are given in [10] and particularly for the 2-token graphs,the automorphism groups are given in
[17].

Recall that disjoint union of two graphs G1 = (V (G1), E(G1)) and G2 = (V (G2), E(G2)),
denoted G1 ⊕G2, is the graph with vertex set,

V (G1 ⊕G2) = V (G1) ∪ V (G2) and E(G1 ⊕G2) = E(G1) ∪ E(G2).

Visually, G1 ⊕ G2 is a juxtaposition of G1 and G2. Clearly, operation ⊕ is binary, associative and
commutative. Recall also that for any graphK = (V (K), E(K)) and L = (V (L), E(L)), the carte-
sian product graph ofK and L, denotedK□L, is the graph with vertex set,

V (K□L) = V (K)× V (L),

and any two different vertices (x, y) and (a, b) in V (K)× V (L), (x, y) and (a, b) are adjacent if and
only if either x = a and yb ∈ E(L) or xa ∈ E(K) and y = b. Clearly, K□L is isomorphic to L□K
respect to a correspondence mapping any (x, y) ∈ V (K□L) to (y, x) ∈ V (L□K). Moreover, for
any graphsG,K andH , it follows that (G⊕H)□K = (G□K)⊕ (H□K). Observe, ifG andK are
two connected graphs, then G□K is also connected.

Consider a particular graph studied in [15] called a staircase graph (see also [16]). According
to [15], the staircase graph SCn is the graph with vertex set,

V (SCn) = {si,j |i = 0, 1, j = 0, 1, 2, . . . , n} ∪ {si,j |i = 2, . . . , n, j = i− 1, . . . , n},

and E(SCn) which consists of all edges in the following forms:

si,jsi+1,j , i = 0, 0 ≤ j ≤ n;

si,jsi+1,j , 1 ≤ i ≤ n− 1, i ≤ j ≤ n;

si,jsi,j+1, i = 0, 1, 0 ≤ j ≤ n− 1;

si,jsi,j+1, 2 ≤ i ≤ n, i− 1 ≤ j ≤ n− 1. (See Figure 1).

Thus, we have |V (SCn)| =
1

2
(n + 1)(n + 2) and |E(SCn)| = n(n + 3). In this paper, it will

be shown that the 2-token graph Γ2(Pn) is isomorphic to SCn−3 with two additional pendant
edges. Additionally, some insights into the structure of the 2-token graph for the disjoint union
of multiple graphs are given, including the automorphism group of the 2-token graph G in the
case where G comprises a disjoint union of several paths. Moreover, some illustrative examples
for better understanding are also provided.
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s0,0 s1,0

s0,1 s1,1 s2,1

s0,2 s1,2 s2,2 s3,2

s0,3 s1,3 s2,3 s3,3

Figure 1: Staircase Graph SC3.

2 Results

It’s straightforward to notice that Γ2(C3) is isomorphic to C3, and Γ2(P3) is isomorphic to P3.
In Figure 2 and Figure 3, we can see the disjoint union graph P3 ⊕ C3 and its 2-token graph,
respectively.

a1 a2

a3

x1 x2 x3

Figure 2: Disjoint union C3 ⊕ P3 of C3 and P3.

Let A = {a1, a2}, A2 = {a1, a3}, A3 = {a2, a3} and B = {x1, x2}, B2 = {x1, x3}, B3 = {x2, x3}.
Let alsoD1 = {a1, x1},D2 = {a2, x1},D3 = {a3, x1},D4 = {a1, x2},D5 = {a2, x2},D6 = {a3, x2},
D7 = {a1, x3},D8 = {a2, x3},D9 = {a3, x3}. Then, the 2-token graph of C3 ⊕ P3 can be described
as shown in Figure 3.

A1 A2

A3

B1 B2 B3

D1

D4

D7

D2

D5

D8

D3

D6

D9

Figure 3: The 2-token graph Γ2(C3 ⊕ P3) of C3 ⊕ P3.

In this section, it is given a proof that the 2-token graph of disjoint union of two graphs consists
of at least three components.

722



Y. Susanti Malaysian J. Math. Sci. 17(4): 719–730(2023) 719 - 730

Lemma 2.1. Given any two graphsK and H . If G = K ⊕H , then

Γ2(G) ∼= Γ2(K)⊕ Γ2(H)⊕ (K□H).

Proof. It is clear that Γ2(K) and Γ2(H) are subgraphs of Γ2(G). Now, wewill show that each vertex
in Γ2(K) or in Γ2(H) is not connected by any single vertex in Γ2(G). Let,

V (K) = {ai|i = 1, 2, . . . ,m} and V (H) = {xi|i = 1, 2, . . . , n}.

Clearly, for any A ∈ V (Γ2(K)) and for any B ∈ V (Γ2(H)), it follows that A△B = ∅ so that
AB /∈ E(Γ2(G)). Secondly, let W = V (Γ2(G)) \ (V (Γ2(K)) ∪ V (Γ2(H))). Clearly, any vertex
C ∈ W is of the form A = {ai, xj} for some i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}. We will prove
that any vertex in V (Γ2(K)) ∪ V (Γ2(H)) is not adjacent to any vertex in C ∈W . Let,

A ∈ (V (Γ2(K)) ∪ V (Γ2(H))).

We will prove only when A ∈ V (Γ2(K)).

For A ∈ V (Γ2(H)), the proof is similar. Let, A = {ap, aq} ∈ V (Γ2(K)) and C = {ai, xj} ∈ W
for some p, q, i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}. Obviously, AC /∈ E(Γ2(G)) if A ∩ C = ∅. If
A ∩ C ̸= ∅, then A ∩ C = {ak} for some k ∈ {p, q}. Hence, A△C is equal to {ap, xj} or {aq, xj}.
Therefore, AC /∈ E(Γ2(G)) as apxj , aqxj /∈ E(G).

Now, consider the subgraph of Γ2(G) induced byW . Let A,B ∈W with A ̸= B.
Let A = {ai, xj} and B = {ak, xl}. Clearly, (i, j) ̸= (k, l). We will consider three cases;

1. If i = k and j ̸= l, then A△B = {xj , xl}. Thus, AB ∈ E(Γ2(G)) if and only if xjxl ∈ E(H).

2. If i ̸= k and j = l, then A△B = {ai, ak} and therefore AB ∈ E(Γ2(G)) if and only if
aiak ∈ E(K).

3. If i ̸= k and j ̸= l, then clearly AB /∈ E(Γ2(G)) as |A△B| = 4.

From these three cases, we have that {ai, xj}{ak, xl} ∈ E(Γ2(G)) if and only if either i = k and
xjxl ∈ E(H) or aiak ∈ E(K) and j = l.

Now, construct a mapping f : W → V (K) × V (H) by f({ai, xj}) = (ai, xj) for any {ai, xj} ∈
W . It is easy to see that f is bijective. Moreover, by this correspondence we have that the subgraph
induced byW in Γ2(G) is isomorphic toK□H . Therefore, we conclude Γ2(G) ∼= Γ2(K)⊕Γ2(H)⊕
(K□H).

From Lemma 2.1, we can extend the result for arbitrary union disjoint graphs as given subse-
quently.

Theorem 2.1. Given n graphs Gi, i = 1, 2, . . . , n, with n ≥ 2. If G =
⊕n

i=1Gi, then

Γ2(G) ∼=
n⊕

i=1

Γ2(Gi)⊕
⊕

1≤i<j≤n

(Gi□Gj).

Proof. We will prove by mathematical induction on n. For n = 2, we have G = G1 ⊕G2 so that

Γ2(G) = Γ2(G1 ⊕G2) = Γ2(G1)⊕ Γ2(G2)⊕ (G1□G2),
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by Lemma 2.1. Thus, it is true for n = 2. Assume that the assertion is true for n = k. We will
prove that the assertion is true for n = k + 1. Let G =

⊕k+1
i=1 Gi. Clearly, G = (

⊕k
i=1Gi) ⊕Gk+1.

Hence, by Lemma 2.1 and the induction hypothesis we have

Γ2(G) = Γ2

(
(

k⊕
i=1

Gi)⊕Gk+1

)
= Γ2(

k⊕
i=1

Gi)⊕ Γ2(Gk+1)⊕

(
(

k⊕
i=1

Gi)□Gk+1

)

=

k⊕
i=1

Γ2(Gi)⊕
⊕

1≤i<j≤k

(Gi□Gj)⊕ Γ2(Gk+1)⊕
k⊕

i=1

(Gi□Gk+1)

=

k+1⊕
i=1

Γ2(Gi)⊕
⊕

1≤i<j≤k+1

(Gi□Gj).

We conclude that the assertion is true for any natural number n ≥ 2.

As an implication, we have this subsequent result.

Corollary 2.1. Given connected graphs Gi’s, i = 1, 2, . . . , n. If G =
⊕n

i=1Gi, then the 2-token graph

Γ2(G) has precisely n+

(
n

2

)
components.

Proof. By Theorem 1 in [7], Γ2(Gi) is connected. Moreover, Gi□Gj is also connected for any
i, j = 1, 2, . . . , n and i < j. Therefore, by Theorem 2.1, the graph Γ2(

⊕n
i=1Gi) has n components

of the form Γ2(Gi), i = 1, 2, . . . , n and
(
n

2

)
components in the form of cartesian products

Gi□Gj , i, j = 1, 2, . . . , n and i < j. the assertion follows by Theorem 2.1.

Now, let for any natural number n ≥ 2, Pn be a path graph of order n. Observe that for
n = 3, P3

∼= Γ2(P3). Now, let us see the following pictures of path graphs P4 and P5 with their
corresponding 2-token graphs in Figures 4 and 5.

x1 x2 x3 x4

Figure 4: Path graph P4.

y1 y2 y3 y4 y5

Figure 5: Path graph P5.

From Figure 6 and Figure 7, we know that the 2-token graph of P4 and of P5 is isomorphic
to some modification of staircase graph SC1 and SC2, each is modified by adding two pendants.
As for n = 3, the 2-token graph Pn is isomorphic to Pn itself, we can summarize this fact in the
following theorem.
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{x1, x2}

{x1, x3} {x2, x3}

{x1, x4} {x2, x4} {x3, x4}

Figure 6: The 2-token graph Γ2(P4).

{y1, y2}

{y1, y3} {y2, y3}

{y1, y4} {y2, y4} {y3, y4}

{y1, y5} {y2, y5} {y3, y5} {y4, y5}

Figure 7: The 2-token graph Γ2(P5).

Theorem 2.2. Let Pn, n ≥ 4 be a path graph. Then Γ2(Pn) ∼= SC∗∗
n−3 where SC∗∗

n−3 is obtained from the
SCn−3 by adding two additional vertices u and v and two pendants us0,0 and vsn−3,n−3.

Proof. Let V (Pn) = {xi|1 ≤ i ≤ n} and E(Pn) = {xixi+1|1 ≤ i ≤ n − 1}. Then, for any
A = {xi, xj}, B = {xk, xl} ∈ V (Γ2(Pn)), AB ∈ E(Γ2(Pn)) if and only if A△B = {xp, xp+1}
for some p ∈ {i, j, k, l}. Let u = {x1, x2} and v = {xn−1, xn}. Now, we construct a mapping
ψ : V (Γ2(Pn)) \ {u, v} → V (SCn−3) by ψ({xi, xj}) = si−1,j−3, for any i < j with 1 ≤ i ≤ n and
3 ≤ j ≤ n. Let {xi, xj}, {xk, xl} ∈ V (Γ2(Pn)) \ {u, v}. If {xi, xj}{xk, xl} ∈ E(Γ2(Pn)), then we
have {xi, xj}△{xk, xl} = {xr, xr+1} for some xrxr+1 ∈ E(Pn). WLOG, let xi = xk, i.e. i = k and
j = r, l = r + 1.

If i < j, then,

ψ({xi, xj})ψ({xk, xl}) = si−1,j−3sk−1,l−3 = si−1,j−3si−1,l−3 = si−1,r−3si−1,r−2 ∈ E(SCn−3).
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If i > j, then,

ψ({xi, xj})ψ({xk, xl}) = si−3,j−1sk−3,l−1 = si−3,j−1si−3,l−1 = si−3,r−1si−3,r ∈ E(SCn−3).

Conversely, let ψ({xi, xj})ψ({xk, xl}) ∈ E(SCn−2). Let i < j and k < l. Then,

si−1,j−3sk−1,l−3 ∈ E(SCn−3).

It means that either i = k and l = j + 1 or j = l and k = i + 1. Thus, {xk, xl} = {xi, xj+1}
or {xk, xl} = {xi+1, xj}. Therefore, {xi, xj}{xk, xl} ∈ E(Γ2(Pn)), so that ψ is an isomorphism
between SCn−3 with the 2-token graph Γ2(Pn) without u and v, in the sense that u and v are
removed from Γ2(Pn). These removals imply also the removals of edges {x1, x2}{x2, x3} and
{xn−2, xn−1}{xn−1, xn}. Therefore, by adding the two vertices u and v to SCn−3 and add two
edges us0,0 and vsn−3,n−3 we will obtain the graph of size (n − 3)n + 2 = |E(Γ2(Pn))|. Further-
more, the resulted graph is isomorphic to the 2-token graph Γ2(Pn).

From Theorem 2.2 we know that if f is an isomorphism on Γ2(Pn), n ≥ 4 or n = 3, then
f is either an identity element or a bijection switching vertices respect to "folding symmetry" of
the graph. But particularly for n = 4, we have more isomorphisms on the graph. We formally
summarize this fact in the subsequent theorem. For this, recall that the group Z2 is the additive
group of all integer classes modulo 2. In the following lemmawe prove that automorphism group
of the 2-token graph of a path graph is either isomorphic to the group Z2 or the cartesian group
Z2 × Z2 under pointwise additive operation.

Lemma 2.2. Let Pn, n ≥ 3 be a path graph. Then,

(i) Aut(Pn) ∼= Aut(Γ2(Pn)) ∼= Z2 for n = 3.

(ii) Aut(Γ2(Pn)) ∼= Aut(SC∗∗
1 ) ∼= Z2 × Z2 for n = 4.

(iii) Aut(Pn) ∼= Aut(Γ2(Pn)) ∼= Aut(SCn−3) ∼= Aut(SC∗∗
n−3)

∼= Z2 for n ≥ 5.

Proof. Let V (Pn) = {xp|1 ≤ p ≤ n}. For any n, Aut(Pn) precisely consists of the identity mapping
and the mapping f : V (Pn) → V (Pn) with f(xp) = n + 1 − p for all p = 1, . . . , n. Therefore,
Aut(Pn) ∼= Z2,

(i) It is clear that P3
∼= Γ2(P3), so that Aut(Γ2(P3)) ∼= Z2.

(ii) For n = 4, the 2-token graph Γ2(Pn) ∼= SC∗∗
1 is the graph given in Figure 6.

LetA1 = {x1, x2},A2 = {x1, x3},A3 = {x1, x4},A4 = {x2, x3},A5 = {x2, x4},A6 = {x3, x4}.
The Aut(Γ2(P4)) consists of the identity mapping and the three mappings;

θ1 =

(
A1 A2 A3 A4 A5 A6

A1 A2 A4 A3 A5 A6

)
, θ2 =

(
A1 A2 A3 A4 A5 A6

A6 A5 A3 A4 A2 A1

)
, and

θ3 =

(
A1 A2 A3 A4 A5 A6

A6 A5 A4 A3 A2 A1

)
.

It is straightforward that Aut(Γ2(Pn)) ∼= Z2 × Z2.

(iii) For n ≥ 5, letE(Pn) = {xpxp+1|1 ≤ p ≤ n−1}. Let f be an isomorphism on Γ2(Pn). By The-
orem 2.2, we have Γ2(Pn) ∼= SC∗∗

n−3. It is easy to see that f is either the identity mapping id
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or a bijection f that maps {xp, xq} to {xn+1−p, xn+1−q} for every {xp, xq} ∈ V (Γ2(Pn)). Ob-
viously, f2 = f . Hence,Aut(Γ2(Pn)) = {id, f}, which is isomorphic to the group Z2. Hence,
Aut(Γ2(Pn)) ∼= Aut(SC∗∗

n−3)
∼= Z2. Moreover, f restricted on V (SCn−3), i.e. f |V (SCn−3), is

the only nonidentity isomorphism on SCn−3. Also, f |2V (SCn−3)
= f |V (SCn−3).

Thus, Aut(SCn−3) ∼= Z2, and as a consequence, we have

Aut(Pn) ∼= Aut(Γ2(Pn)) ∼= Aut(SCn−3) ∼= Aut(SC∗∗
n−3)

∼= Z2.

Let Symn, n ≥ 2, be the symmetric group on {1, 2, . . . , n} respect to the composition of func-
tions. Recall that the dihedral D2n is the subgroup of Symn representing all rigid motions on a
regular n-gon. We have the following results.

Lemma 2.3. Let P i
n, n ≥ 3, i = 1, 2, . . . , k be path graphs of order n. Then,

(i) Aut(Γ2(P
1
n)⊕ . . .⊕ Γ2(P

k
n ))

∼= Symk × Z2 × . . .× Z2︸ ︷︷ ︸
k-times

for n ̸= 4.

(ii) Aut(Γ2(P
1
n)⊕ . . .⊕ Γ2(P

k
n ))

∼= Symk × Z2 × . . .× Z2︸ ︷︷ ︸
2k-times

for n = 4.

Proof. For all i = 1, . . . , k, let V (P i
n) = {xij |j = 1, . . . , n} and E(P i

n) = {xijxij+1|j = 1, . . . , n − 1}.
Then, we obtain V (Γ2(P

i
n)) = {{xip, xiq}|p < q and p, q = 1, . . . , n} for each i = 1, . . . , k. Now, let

G = Γ2(P
1
n)⊕ . . .⊕ Γ2(P

k
n ). Let α ∈ Symk be arbitrary. We construct

θα : {V (Γ2(P
i
n))|i = 1, . . . , k} → {V (Γ2(P

i
n))|i = 1, . . . , k},

with θα(V (Γ2(P
i
n))) = V (Γ2(P

α(i)
n )). Let n ̸= 4. Let (α, f1, . . . , fk) be arbitrary (k + 1)-tuple with

fi : Γ2(P
α(i)
n ) → Γ2(P

α(i)
n ) is either the identity mapping id

Γ2(P
α(i)
n )

on Γ2(P
α(i)
n ) or a mapping

defined by fi({xα(i)p , x
α(i)
q }) = {xα(i)n+1−q, x

α(i)
n+1−p} for every {xα(i)p , x

α(i)
q } ∈ V (Γ2(P

α(i)
n )), for all

i = 1, . . . , k. These (k + 1)−tuples define isomorphisms on G for any α ∈ Symk. Conversely, as
n ̸= 4, by Lemma 2.2, each isomorphism on G belongs to Symk × Z2 × . . .× Z2︸ ︷︷ ︸

k-times

so that,

Aut(G) = Aut(Γ2(P
1
n)⊕ . . .⊕ Γ2(P

k
n ))

∼= Symk × Z2 × . . .× Z2︸ ︷︷ ︸
k-times

.

For n = 4, by Lemma 2.2, Γ2(Pn) ∼= Z2 × Z2. Therefore, by a similar argument, we have

Aut(Γ2(P
1
n)⊕ . . .⊕ Γ2(P

k
n ))

∼= Symk × Z2 × . . .× Z2︸ ︷︷ ︸
2k-times

.

We close this section with the following discussion on the 2-token graphs of disjoint union of
path graphs.

Theorem 2.3. Let P i
n, n ≥ 3, i = 1, 2, . . . , k be path graphs. Let p =

k(k − 1)

2
. If G = P 1

n ⊕ . . .⊕ P k
n ,

then,
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(i) Aut(G) ∼= Symk × Z2 × . . .× Z2︸ ︷︷ ︸
k-times

×Symp ×D8 × . . .×D8︸ ︷︷ ︸
p-times

, for n ̸= 4.

(ii) Aut(G) ∼= Symk × Z2 × . . .× Z2︸ ︷︷ ︸
2k-times

×Symp ×D8 × . . .×D8︸ ︷︷ ︸
p-times

, for n = 4.

Proof. Let G = P 1
n ⊕ . . .⊕ P k

n . Then, by Theorem 2.1 we have,

Γ2(G) ∼=
k⊕

i=1

Γ2(P
i
n)⊕

⊕
1≤i<j≤k

(P i
n□P

j
n).

Clearly,
⊕k

i=1 Γ2(P
i
n) and

⊕
1≤i<j≤k(P

i
n□P

j
n) are invariant under any isomorphism on Γ2(G). It is

also obvious that Aut(P i
n□P

j
n)

∼= D8. Moreover, we have also k(k − 1)

2
disjoint union of cartesian

product graphs in the form P i
n□P

j
n. Similar to the proof of Lemma 2.3, we can permute the vertex

sets of these p = k(k − 1)

2
graphs, so that we have,

Aut(
⊕

1≤i<j≤k

(P i
n□P

j
n))

∼= Symp ×D8 × . . .×D8︸ ︷︷ ︸
p-times

.

Altogether by Lemma 2.3, we have,

Aut(G) ∼= Symk × Z2 × . . .× Z2︸ ︷︷ ︸
k-times

×Symp ×D8 × . . .×D8︸ ︷︷ ︸
p-times

,

for n ̸= 4 and

Aut(G) ∼= Symk × Z2 × . . .× Z2︸ ︷︷ ︸
2k-times

×Symp ×D8 × . . .×D8︸ ︷︷ ︸
p-times

,

for n = 4. This completes the proof.

We close this section by presenting Figure 8, as an illustration of the k-token graph of the
disjoint union P 1

5 ⊕ P 2
5 ⊕ P 3

5 of path graphs P i
5, for i = 1, 2, 3.

Γ2(P
1
5 ) Γ2(P

2
5 ) Γ2(P

1
5 )

P 2
5□P 3

5P 1
5□P 3

5P 1
5□P 2

5

Figure 8: The 2-token graph Γ2(P
1
5 ⊕ P 2

5 ⊕ P 3
5 ).
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3 Conclusions

From our earlier discussion, we have obtained the structure of the 2-token graph of disjoint
union of multiple graphs. Nevertheless, for any given k, the structure of the k-token graph of
disjoint union of multiple graphs is not yet ascertained. Additionally, the structures of the k-
token graph of graphs constructed by performing some graph operations in general are also still
unknown. These questions present intriguing areas for future research.
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